讲座题目:简单的随机非线性自回归模型及其在泡沫研究方面的应用
A simple stochastic nonlinear AR model with application to bubble
时间:2023年11月2日13:30-15:30
地点:博学楼925
主讲人:李东
主讲人简介:
李东,清华大学统计学研究中心(长聘)副教授,2010年12月毕业于香港科技大学,2013年9月加入清华大学。主要从事计量经济学、金融计量学、时间序列分析、网络数据与大数据分析、机器学习等方面的研究。在统计学和计量统计学杂志上共发表研究论文40余篇。目前担任中国数学会概率统计分会常务理事,北京大数据协会常务理事,北京应用统计学会理事等;曾任全国工业统计学教学研究会常务理事、中国数学会概率统计分会副秘书长。
讲座内容简介:
中文摘要:
当泡沫形成的时候,金融时间序列通常会出现局部爆炸的行为特征。金融泡沫及其动态机制研究是一个经久不衰的话题。为了解释局部爆炸的动态机制,本报告提出了一个新的时间序列模型,称之为SNAR模型,它始终是严平稳及几何遍历的,能够产生在许多宏观经济变量中观测到的持续性。当参数系数>1时,模型会产生周期性爆炸行为,因此该模型可以用来近似描述泡沫的动态。进一步,该报告考虑模型的伪极大似然估计,在极简的假设下建立了其强相合性与渐近正态性;提出了一种新的模型诊断统计量;从经验视角,启发式地提出了四种标注泡沫破灭的参考准则。估计量及标注准则的有限样本表现由蒙特卡洛数值模拟得到验证,最后分析了香港恒生指数月度数据。
Abstract:
Financial time series can feature locally explosive behavior when a bubble is formed. The financial bubble, especially its dynamics, is an intriguing topic that has been attracting longstanding attention. To illustrate the dynamics of the local explosion itself, the paper presents a new time series model, called random coefficient absolute autoregressive model, which is always strictly stationary and geometrically ergodic and can create long swings or persistence observed in many macroeconomic variables. When the parameter >1, the model has periodically explosive behaviors and can then be used to portray the bubble dynamics. Further, the quasi-maximum likelihood estimation (QMLE) of our model is considered, and its strong consistency and asymptotic normality are established under minimal assumptions on innovation. A new model diagnostic checking statistic is developed for model fitting adequacy. Four reference rules dating collapses of bubble process are heuristically provided from an empirical perspective. Monte Carlo simulation studies are conducted to assess the performance of the QMLE and reference rules in finite samples. Finally, the usefulness of the model is illustrated by an empirical application to the monthly Hang Seng Index.